Liprin-alpha/SYD-2 is a multimodular scaffolding protein important for presynaptic differentiation and postsynaptic targeting of alpha-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid glutamate receptors. However, the molecular mechanisms underlying these functions remain largely unknown. Here we report that liprin-alpha interacts with the neuron-specific kinesin motor KIF1A. KIF1A colocalizes with liprin-alpha in various subcellular regions of neurons. KIF1A coaccumulates with liprin-alpha in ligated sciatic nerves. KIF1A cofractionates and coimmunopreciptates with liprin-alpha and various liprin-alpha-associated membrane, signaling, and scaffolding proteins including alpha-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid receptors, GRIP/ABP, RIM, GIT1, and beta PIX. These results suggest that liprin-alpha functions as a KIF1A receptor, linking KIF1A to various liprin-alpha-associated proteins for their transport in neurons.
Publications
2003
The Shank/ProSAP family of multidomain proteins is known to play an important role in organizing synaptic multiprotein complexes. Here we report a novel interaction between Shank and beta PIX, a guanine nucleotide exchange factor for the Rac1 and Cdc42 small GTPases. This interaction is mediated by the PDZ domain of Shank and the C-terminal leucine zipper domain and the PDZ domain-binding motif at the extreme C terminus of beta PIX. Shank colocalizes with beta PIX at excitatory synaptic sites in cultured neurons. In brain, Shank forms a complex with beta PIX and beta PIX-associated signaling molecules including p21-associated kinase (PAK), an effector kinase of Rac1/Cdc42. Importantly, overexpression of Shank in cultured neurons promotes synaptic accumulation of beta PIX and PAK. Considering the involvement of Rac1 and PAK in spine dynamics, these results suggest that Shank recruits beta PIX and PAK to spines for the regulation of postsynaptic structure.
Liprin-alpha is a multidomain protein that interacts with the LAR family of receptor protein tyrosine phosphatases and the GRIP/ABP family of AMPA receptor-interacting proteins. Previous studies have indicated that liprin-alpha regulates the development of presynaptic active zones and that the association of liprin-alpha with GRIP is required for postsynaptic targeting of AMPA receptors. However, the underlying molecular mechanisms are not well understood. Here we report that liprin-alpha directly interacts with GIT1, a multidomain protein with GTPase-activating protein activity for the ADP-ribosylation factor family of small GTPases known to regulate protein trafficking and the actin cytoskeleton. Electron microscopic analysis indicates that GIT1 distributes to the region of postsynaptic density (PSD) as well as presynaptic active zones. GIT1 is enriched in PSD fractions and forms a complex with liprin-alpha, GRIP, and AMPA receptors in brain. Expression of dominant-negative constructs interfering with the GIT1-liprin-alpha interaction leads to a selective and marked reduction in the dendritic and surface clustering of AMPA receptors in cultured neurons. These results suggest that the GIT1-liprin-alpha interaction is required for AMPA receptor targeting and that GIT1 may play an important role in the organization of presynaptic and postsynaptic multiprotein complexes.
The Mohr-Tranebjaerg-Jensen deafness-dystonia-optic atrophy protein DDP/TIMM8a is translated on cytoplasmic ribosomes but targeted ultimately to the mitochondrial intermembrane space, where it is involved in mitochondrial protein import. STAM1 is a cytoplasmic signal-transducing adaptor molecule implicated in cytokine signaling. We report here a direct interaction between DDP and STAM1, identified by yeast two-hybrid screening and confirmed by co-immunoprecipitation, fusion protein "pull downs," and nuclear redistribution assays. DDP coordinates Zn(2+), and Zn(2+) was found to stimulate the DDP-STAM1 interaction in vitro. Endogenous STAM1 localizes predominantly to early endosomes, and we found no evidence that STAM1 is imported into mitochondria in vitro. Thus, the DDP-STAM1 interaction likely occurs in the cytoplasm or at the mitochondrial outer membrane. The DDP-STAM1 interaction requires a coiled-coil region in STAM1 that overlaps with the immunoreceptor tyrosine-based activation motif (ITAM), a region previously shown to be important for interaction with Jak2/3 and hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs). Thus, DDP binding may alter the interactions of STAM1 with several cytoplasmic proteins involved in cell signaling and endosomal trafficking.
Cholesterol/sphingolipid microdomains (lipid rafts) in the membrane are involved in protein trafficking, formation of signaling complexes, and regulation of actin cytoskeleton. Here, we show that lipid rafts exist abundantly in dendrites of cultured hippocampal neurons, in which they are associated with several postsynaptic proteins including surface AMPA receptors. Depletion of cholesterol/sphingolipid leads to instability of surface AMPA receptors and gradual loss of synapses (both inhibitory and excitatory) and dendritic spines. The remaining synapses and spines in raft-depleted neurons become greatly enlarged. The importance of lipid rafts for normal synapse density and morphology could explain why cholesterol promotes synapse maturation in retinal ganglion cells (Mauch et al., 2001) and offers a potential link between disordered cholesterol metabolism and the synapse loss seen in neurodegenerative disease.
Dynamic movements of AMPA receptors in and out of the postsynaptic membrane account for, at least in part, the expression of NMDA receptor-dependent changes in synaptic efficacy such as long-term potentiation and long-term depression. Recently some of key molecules and subunit rules involved in AMPA receptor trafficking have been identified. In this update article, we try to highlight what we believe to be the major conceptual problems and unanswered questions in this rapidly moving field of neuroscience.
Synaptic transmission from excitatory nerve cells in the mammalian brain is largely mediated by AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid)-type glutamate receptors located at the surface of dendritic spines. The abundance of postsynaptic AMPA receptors correlates with the size of the synapse and the dimensions of the dendritic spine head. Moreover, long-term potentiation is associated with the formation of dendritic spines as well as synaptic delivery of AMPA receptors. The molecular mechanisms that coordinate AMPA receptor delivery and spine morphogenesis are unknown. Here we show that overexpression of the glutamate receptor 2 (GluR2) subunit of AMPA receptors increases spine size and density in hippocampal neurons, and more remarkably, induces spine formation in GABA-releasing interneurons that normally lack spines. The extracellular N-terminal domain (NTD) of GluR2 is responsible for this effect, and heterologous fusion proteins of the NTD of GluR2 inhibit spine morphogenesis. We propose that the NTD of GluR2 functions at the cell surface as part of a receptor-ligand interaction that is important for spine growth and/or stability.
The postsynaptic density (PSD) proteins Shank and Homer cooperate to induce the maturation and enlargement of dendritic spines (Sala et al., 2001). Homer1a is an activity-inducible short-splice variant of Homer that lacks dimerization capacity. Here, we show that Homer1a reduces the density and size of dendritic spines in cultured hippocampal neurons in correlation with an inhibition of Shank targeting to synapses. Expression of Homer1a also decreases the size of PSD-95 clusters, the number of NMDA receptor clusters, and the level of surface AMPA receptors, implying a negative effect on the growth of synapses. In parallel with the morphological effects on synapses, Homer1a-expressing neurons show diminished AMPA and NMDA receptor postsynaptic currents. All of these outcomes required the integrity of the Ena/VASP Homology 1 domain of Homer1a that mediates binding to the PPXXF motif in Shank and other binding partners. Overexpression of the C-terminal region of Shank containing the Homer binding site causes effects similar to those of Homer1a. These data indicate that an association between Shank and the constitutively expressed long-splice variants of Homer (e.g., Homer1b/c) is important for maintaining dendritic-spine structure and synaptic function. Because Homer1a expression is induced by synaptic activity, our results suggest that this splice variant of Homer operates in a negative feedback loop to regulate the structure and function of synapses in an activity-dependent manner.