Publications

2009

Synaptic adhesion molecules regulate multiple steps of synapse formation and maturation. The great diversity of neuronal synapses predicts the presence of a large number of adhesion molecules that control synapse formation through trans-synaptic and heterophilic adhesion. We identified a previously unknown trans-synaptic interaction between netrin-G ligand-3 (NGL-3), a postsynaptic density (PSD) 95-interacting postsynaptic adhesion molecule, and leukocyte common antigen-related (LAR), a receptor protein tyrosine phosphatase. NGL-3 and LAR expressed in heterologous cells induced pre- and postsynaptic differentiation in contacting axons and dendrites of cocultured rat hippocampal neurons, respectively. Neuronal overexpression of NGL-3 increased presynaptic contacts on dendrites of transfected neurons. Direct aggregation of NGL-3 on dendrites induced coclustering of excitatory postsynaptic proteins. Knockdown of NGL-3 reduced the number and function of excitatory synapses. Competitive inhibition by soluble LAR reduced NGL-3-induced presynaptic differentiation. These results suggest that the trans-synaptic adhesion between NGL-3 and LAR regulates excitatory synapse formation in a bidirectional manner.

Mitogen-activated protein kinases (MAPKs) control neuronal synaptic function; however, little is known about the synaptic substrates regulated by MAPKs. A phosphopeptide library incorporating the MAPK consensus motif (PX(pS/pT)P where pS is phosphoserine and pT is phosphothreonine) was used to raise a phosphospecific antibody that detected MAPK-mediated phosphorylation. The antibody (termed "5557") recognized a variety of phosphoproteins in the brain, many of which were enriched in postsynaptic density fractions. The immunoblot pattern changed rapidly in response to altered synaptic activity and with the inhibition of specific MAPKs and protein phosphatases. By immunoaffinity purification with 5557 antibody followed by mass spectrometry, we identified 449 putative MAPK substrates of which many appeared dynamically regulated in neuron cultures. Several of the novel candidate MAPK substrates were validated by in vitro phosphorylation assays. Additionally 82 specific phosphorylation sites were identified in 34 proteins, including Ser-447 in delta-catenin, a component of the cadherin adhesion complex. We further raised another phosphospecific antibody to confirm that delta-catenin Ser-447 is modified in neurons by the MAPK JNK in a synaptic activity-dependent manner. Ser-447 phosphorylation by JNK appears to be correlated with delta-catenin degradation, and a delta-catenin mutant defective in Ser-447 phosphorylation showed enhanced ability to promote dendrite branching in cultured neurons. Thus, phosphomotif-based affinity purification is a powerful approach to identify novel substrates of MAPKs in vivo and to reveal functionally significant phosphorylation events.

BACKGROUND: Long-term depression (LTD) in the hippocampus can be induced by activation of different types of G-protein coupled receptors, in particular metabotropic glutamate receptors (mGluRs) and muscarinic acetylcholine receptors (mAChRs). Since mGluRs and mAChRs activate the same G-proteins and isoforms of phospholipase C (PLC), it would be expected that these two forms of LTD utilise the same molecular mechanisms. However, we find a distinct mechanism of LTD involving GRIP and liprin-alpha.

RESULTS: Whilst both forms of LTD require activation of tyrosine phosphatases and involve internalisation of AMPARs, they use different molecular interactions. Specifically, mAChR-LTD, but not mGluR-LTD, is blocked by peptides that inhibit the binding of GRIP to the AMPA receptor subunit GluA2 and the binding of GRIP to liprin-alpha. Thus, different receptors that utilise the same G-proteins can regulate AMPAR trafficking and synaptic efficacy via distinct molecular mechanisms.

CONCLUSION: Our results suggest that mAChR-LTD selectively involves interactions between GRIP and liprin-alpha. These data indicate a novel mechanism of synaptic plasticity in which activation of M1 receptors results in AMPAR endocytosis, via a mechanism involving interactions between GluA2, GRIP and liprin-alpha.

Long-term depression (LTD) is a long-lasting activity-dependent decrease in synaptic strength. NMDA receptor (NMDAR)-dependent LTD, an extensively studied form of LTD, involves the endocytosis of AMPA receptors (AMPARs) via protein dephosphorylation, but the underlying mechanism has remained unclear. We show here that a regulated interaction of the endocytic adaptor RalBP1 with two synaptic proteins, the small GTPase RalA and the postsynaptic scaffolding protein PSD-95, controls NMDAR-dependent AMPAR endocytosis during LTD. NMDAR activation stimulates RalA, which binds and translocates widespread RalBP1 to synapses. In addition, NMDAR activation dephosphorylates RalBP1, promoting the interaction of RalBP1 with PSD-95. These two regulated interactions are required for NMDAR-dependent AMPAR endocytosis and LTD and are sufficient to induce AMPAR endocytosis in the absence of NMDAR activation. RalA in the basal state, however, maintains surface AMPARs. We propose that NMDAR activation brings RalBP1 close to PSD-95 to promote the interaction of RalBP1-associated endocytic proteins with PSD-95-associated AMPARs. This suggests that scaffolding proteins at specialized cellular junctions can switch their function from maintenance to endocytosis of interacting membrane proteins in a regulated manner.

2008

Seeburg, D. P., Feliu-Mojer, M., Gaiottino, J., Pak, D. T. S. & Sheng, M. Critical role of CDK5 and Polo-like kinase 2 in homeostatic synaptic plasticity during elevated activity.. Neuron 58, 571–83 (2008).

Homeostatic plasticity keeps neuronal spiking output within an optimal range in the face of chronically altered levels of network activity. Little is known about the underlying molecular mechanisms, particularly in response to elevated activity. We report that, in hippocampal neurons experiencing heightened activity, the activity-inducible protein kinase Polo-like kinase 2 (Plk2, also known as SNK) was required for synaptic scaling-a principal mechanism underlying homeostatic plasticity. Synaptic scaling also required CDK5, which acted as a "priming" kinase for the phospho-dependent binding of Plk2 to its substrate SPAR, a postsynaptic RapGAP and scaffolding molecule that is degraded following phosphorylation by Plk2. RNAi knockdown of SPAR weakened synapses, and overexpression of a SPAR mutant resistant to Plk2-dependent degradation prevented synaptic scaling. Thus, priming phosphorylation of the Plk2 binding site in SPAR by CDK5, followed by Plk2 recruitment and SPAR phosphorylation-degradation, constitutes a molecular pathway for neuronal homeostatic plasticity during chronically elevated activity.

Hung, A. Y. et al. Smaller dendritic spines, weaker synaptic transmission, but enhanced spatial learning in mice lacking Shank1.. The Journal of neuroscience : the official journal of the Society for Neuroscience 28, 1697–708 (2008).

Experience-dependent changes in the structure of dendritic spines may contribute to learning and memory. Encoded by three genes, the Shank family of postsynaptic scaffold proteins are abundant and enriched in the postsynaptic density (PSD) of central excitatory synapses. When expressed in cultured hippocampal neurons, Shank promotes the maturation and enlargement of dendritic spines. Recently, Shank3 has been genetically implicated in human autism, suggesting an important role for Shank proteins in normal cognitive development. Here, we report the phenotype of Shank1 knock-out mice. Shank1 mutants showed altered PSD protein composition; reduced size of dendritic spines; smaller, thinner PSDs; and weaker basal synaptic transmission. Standard measures of synaptic plasticity were normal. Behaviorally, they had increased anxiety-related behavior and impaired contextual fear memory. Remarkably, Shank1-deficient mice displayed enhanced performance in a spatial learning task; however, their long-term memory retention in this task was impaired. These results affirm the importance of Shank1 for synapse structure and function in vivo, and they highlight a differential role for Shank1 in specific cognitive processes, a feature that may be relevant to human autism spectrum disorders.

Seeburg, D. P. & Sheng, M. Activity-induced Polo-like kinase 2 is required for homeostatic plasticity of hippocampal neurons during epileptiform activity.. The Journal of neuroscience : the official journal of the Society for Neuroscience 28, 6583–91 (2008).

Homeostatic plasticity mechanisms stabilize the activity of a neuron or neuronal circuit during prolonged periods of increased network activity and have been proposed to function in the prevention of epilepsy. How homeostatic plasticity is achieved at the molecular level during hyperactivity states in general, and during epileptiform activity in particular, is unclear. Using organotypic hippocampal slice cultures as a model system, we found that the protein kinase Polo-like kinase 2 (Plk2) was induced during prolonged epileptiform activity and was required for the activity-dependent reduction in membrane excitability of pyramidal neurons. Disruption of Plk2 function by dominant-negative or RNA interference not only blocked the downregulation of membrane excitability during epileptiform activity, but also unmasked a slow and progressive potentiation in synaptic strength that prevented the ability of the slice to undergo long-term potentiation. Thus, Plk2 function is required to prevent escalating potentiation and maintain synapses in a plastic state during epileptiform activity in hippocampal slice cultures.

Ang, X. L., Seeburg, D. P., Sheng, M. & Harper, W. Regulation of postsynaptic RapGAP SPAR by Polo-like kinase 2 and the SCFbeta-TRCP ubiquitin ligase in hippocampal neurons.. The Journal of biological chemistry 283, 29424–32 (2008).

The ubiquitin-proteasome pathway (UPP) regulates synaptic function, but little is known about specific UPP targets and mechanisms in mammalian synapses. We report here that the SCF(beta-TRCP) complex, a multisubunit E3 ubiquitin ligase, targets the postsynaptic spine-associated Rap GTPase activating protein (SPAR) for degradation in neurons. SPAR degradation by SCF(beta-TRCP) depended on the activity-inducible protein kinase Polo-like kinase 2 (Plk2). In the presence of Plk2, SPAR physically associated with the SCF(beta-TRCP) complex through a canonical phosphodegron. In hippocampal neurons, disruption of the SCF(beta-TRCP) complex by overexpression of dominant interfering beta-TRCP or Cul1 constructs prevented Plk2-dependent degradation of SPAR. Our results identify a specific E3 ubiquitin ligase that mediates degradation of a key postsynaptic regulator of synaptic morphology and function.