Publications

2006

Dendritic spines show rapid motility and plastic morphology, which may mediate information storage in the brain. It is presently believed that polymerization/depolymerization of actin is the primary determinant of spine motility and morphogenesis. Here, we show that myosin IIB, a molecular motor that binds and contracts actin filaments, is essential for normal spine morphology and dynamics and represents a distinct biophysical pathway to control spine size and shape. Myosin IIB is enriched in the postsynaptic density (PSD) of neurons. Pharmacologic or genetic inhibition of myosin IIB alters protrusive motility of spines, destabilizes their classical mushroom-head morphology, and impairs excitatory synaptic transmission. Thus, the structure and function of spines is regulated by an actin-based motor in addition to the polymerization state of actin.

Cheng, D. et al. Relative and absolute quantification of postsynaptic density proteome isolated from rat forebrain and cerebellum.. Molecular & cellular proteomics : MCP 5, 1158–70 (2006).

The postsynaptic density (PSD) of central excitatory synapses is essential for postsynaptic signaling, and its components are heterogeneous among different neuronal subtypes and brain structures. Here we report large scale relative and absolute quantification of proteins in PSDs purified from adult rat forebrain and cerebellum. PSD protein profiles were determined using the cleavable ICAT strategy and LC-MS/MS. A total of 296 proteins were identified and quantified with 43 proteins exhibiting statistically significant abundance change between forebrain and cerebellum, indicating marked molecular heterogeneity of PSDs between different brain regions. Moreover we utilized absolute quantification strategy, in which synthetic isotope-labeled peptides were used as internal standards, to measure the molar abundance of 32 key PSD proteins in forebrain and cerebellum. These data confirm the abundance of calcium/calmodulin-dependent protein kinase II and PSD-95 and reveal unexpected stoichiometric ratios between glutamate receptors, scaffold proteins, and signaling molecules in the PSD. Our data also demonstrate that the absolute quantification method is well suited for targeted quantitative proteomic analysis. Overall this study delineates a crucial molecular difference between forebrain and cerebellar PSDs and provides a quantitative framework for measuring the molecular stoichiometry of the PSD.

Nakagawa, T., Cheng, Y., Sheng, M. & Walz, T. Three-dimensional structure of an AMPA receptor without associated stargazin/TARP proteins.. Biological chemistry 387, 179–87 (2006).

Most excitatory synaptic transmissions in the central nervous system are mediated by the neurotransmitter glutamate. Binding of glutamate released from the presynaptic membrane causes glutamate receptors in the postsynaptic membrane to open, which results in a transient depolarization of the postsynaptic membrane. The AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) subtype of glutamate receptors is responsible for the majority of excitatory postsynaptic currents and is thought to play a central role in synaptic plasticity. Because modulation of glutamate receptors is believed to be involved in the basic mechanism underlying information storage in the brain, the molecular architecture of native AMPA receptors (AMPA-Rs) is of great interest. Previously, we have shown that AMPA-Rs purified from the brain are tightly associated with members of the stargazin/TARP (transmembrane AMPA receptor regulatory protein) family of membrane proteins [Nakagawa et al., Nature 433 (2005), pp. 545-549]. Here, we present a three-dimensional (3D) density map of the hetero-tetrameric AMPA-R without associated stargazin/TARP proteins as determined by cryo-negative stain single-particle electron microscopy. In the absence of stargazin/TARP proteins, the density representing the transmembrane region of the AMPA-R particles is substantially smaller, corroborating our previous analysis that was based solely on projection images.

Nolan, E. M. et al. Zinspy sensors with enhanced dynamic range for imaging neuronal cell zinc uptake and mobilization.. Journal of the American Chemical Society 128, 15517–28 (2006).

Thiophene moieties were incorporated into previously described Zinspy (ZS) fluorescent Zn(II) sensor motifs (Nolan, E. M.; Lippard, S. J. Inorg. Chem. 2004, 43, 8310-8317) to provide enhanced fluorescence properties, low-micromolar dissociation constants for Zn(II), and improved Zn(II) selectivity. Halogenation of the xanthenone and benzoate moieties of the fluorescein platform systematically modulates the excitation and emission profiles, pH-dependent fluorescence, Zn(II) affinity, and Zn(II) complexation rates, offering a general strategy for tuning multiple properties of xanthenone-based metal ion sensors. Extensive biological studies in cultured cells and primary neuronal cultures demonstrate 2-{6-hydroxy-3-oxo-4,5-bis[(pyridin-2-ylmethylthiophen-2-ylmethylamino)methyl]-3H-xanthen-9-yl}benzoic acid (ZS5) to be a versatile imaging tool for detecting Zn(II) in vivo. ZS5 localizes to the mitochondria of HeLa cells and allows visualization of glutamate-mediated Zn(II) uptake in dendrites and Zn(II) release resulting from nitrosative stress in neurons.

Nolan, E. M., Jaworski, J., Racine, M. E., Sheng, M. & Lippard, S. J. Midrange affinity fluorescent Zn(II) sensors of the Zinpyr family: syntheses, characterization, and biological imaging applications.. Inorganic chemistry 45, 9748–57 (2006).

The syntheses and photophysical characterization of ZP9, 2-{2-chloro-6-hydroxy-3-oxo-5-[(2-{[pyridin-2-ylmethyl-(1H-pyrrol-2-ylmethyl)amino]methyl}phenylamino)methyl]-3H-xanthen-9-yl}benzoic acid, and ZP10, 2-{2-chloro-6-hydroxy-5-[(2-{[(1-methyl-1H-pyrrol-2-ylmethyl)pyridin-2-ylmethylamino]methyl}phenylamino)methyl]-3-oxo-3H-xanthen-9-yl}benzoic acid, two asymmetrically derivatized fluorescein-based dyes, are described. These sensors each contain an aniline-based ligand moiety functionalized with a pyridyl-amine-pyrrole group and have dissociation constants for Zn(II) in the sub-micromolar (ZP9) and low-micromolar (ZP10) range, which we define as "midrange". They give approximately 12- (ZP9) and approximately 7-fold (ZP10) fluorescence turn-on immediately following Zn(II) addition at neutral pH and exhibit improved selectivity for Zn(II) compared to the di-(2-picolyl)amine-based Zinpyr (ZP) sensors. Confocal microscopy studies indicate that such asymmetrical fluorescein-based probes are cell permeable and Zn(II) responsive in vivo.

Jaworski, J. & Sheng, M. The growing role of mTOR in neuronal development and plasticity.. Molecular neurobiology 34, 205–19 (2006).

Neuronal development and synaptic plasticity are highly regulated processes in which protein kinases play a key role. Recently, increasing attention has been paid to a serine/threonine protein kinase called mammalian target of rapamycin (mTOR) that has well-known functions in cell proliferation and growth. In neuronal cells, mTOR is implicated in multiple processes, including transcription, ubiquitin-dependent proteolysis, and microtubule and actin dynamics, all of which are crucial for neuronal development and long-term modification of synaptic strength. The aim of this article is to present our current understanding of mTOR functions in axon guidance, dendritic tree development, formation of dendritic spines, and in several forms of long-term synaptic plasticity. We also aim to present explanation for the mTOR effects on neurons at the level of mTORregulated genes and proteins.

2005

Seeburg, D. P., Pak, D. & Sheng, M. Polo-like kinases in the nervous system.. Oncogene 24, 292–8 (2005).

Polo like kinases (Plks) are key regulators of the cell cycle, but little is known about their functions in postmitotic cells such as neurons. Recent findings indicate that Plk2 and Plk3 are dynamically regulated in neurons by synaptic activity at the mRNA and protein levels. In COS cells, Plk2 and Plk3 interact with spine-associated Rap guanosine triphosphatase-activating protein (SPAR), a regulator of actin dynamics and dendritic spine morphology, leading to its degradation through the ubiquitin-proteasome system. Induction of Plk2 in hippocampal neurons eliminates SPAR protein, depletes a core postsynaptic scaffolding molecule (PSD-95), and causes loss of mature dendritic spines and synapses. These findings implicate neuronal Plks as mediators of activity-dependent change in molecular composition and morphology of synapses. Induction of Plks might provide a homeostatic mechanism for global dampening of synaptic strength following heightened neuronal activity ('synaptic scaling'). Synapse-specific actions of induced Plks are also possible, particularly in light of the discovery of phosphoserine/threonine peptide motifs as binding targets of the polo box domain, which could allow for 'priming' phosphorylation by upstream kinases that could 'tag' Plk substrates only in specific synapses.

Lo, K. W.-H. et al. The 8-kDa dynein light chain binds to p53-binding protein 1 and mediates DNA damage-induced p53 nuclear accumulation.. The Journal of biological chemistry 280, 8172–9 (2005).

The tumor suppressor protein p53 is known to undergo cytoplasmic dynein-dependent nuclear translocation in response to DNA damage. However, the molecular link between p53 and the minus end-directed microtubule motor dynein complex has not been described. We report here that the 8-kDa light chain (LC8) of dynein binds to p53-binding protein 1 (53BP1). The LC8-binding domain was mapped to a short peptide segment immediately N-terminal to the kinetochore localization region of 53BP1. The LC8-binding domain is completely separated from the p53-binding domain in 53BP1. Therefore, 53BP1 can potentially act as an adaptor to assemble p53 to the dynein complex. Unlike other known LC8-binding proteins, 53BP1 contains two distinct LC8-binding motifs that are arranged in tandem. We further showed that 53BP1 can directly associate with the dynein complex. Disruption of the interaction between LC8 and 53BP1 in vivo prevented DNA damage-induced nuclear accumulation of p53. These data illustrate that LC8 is able to function as a versatile acceptor to link a wide spectrum of molecular cargoes to the dynein motor.

Nakagawa, T., Cheng, Y., Ramm, E., Sheng, M. & Walz, T. Structure and different conformational states of native AMPA receptor complexes.. Nature 433, 545–9 (2005).

Ionotropic glutamate receptors mediate fast excitatory synaptic transmission in the central nervous system. Their modulation is believed to affect learning and memory, and their dysfunction has been implicated in the pathogenesis of neurological and psychiatric diseases. Despite a wealth of functional data, little is known about the intact, three-dimensional structure of these ligand-gated ion channels. Here, we present the structure of native AMPA receptors (alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid; AMPA-Rs) purified from rat brain, as determined by single-particle electron microscopy. Unlike the homotetrameric recombinant GluR2 (ref. 3), the native heterotetrameric AMPA-R adopted various conformations, which reflect primarily a variable separation of the two dimeric extracellular amino-terminal domains. Members of the stargazin/TARP family of transmembrane proteins co-purified with AMPA-Rs and contributed to the density representing the transmembrane region of the complex. Glutamate and cyclothiazide markedly altered the conformational equilibrium of the channel complex, suggesting that desensitization is related to separation of the N-terminal domains. These data provide a glimpse of the conformational changes of an important ligand-gated ion channel of the brain.

Kim, M. J., Dunah, A. W., Wang, Y. T. & Sheng, M. Differential roles of NR2A- and NR2B-containing NMDA receptors in Ras-ERK signaling and AMPA receptor trafficking.. Neuron 46, 745–60 (2005).

NMDA receptors (NMDARs) control bidirectional synaptic plasticity by regulating postsynaptic AMPA receptors (AMPARs). Here we show that NMDAR activation can have differential effects on AMPAR trafficking, depending on the subunit composition of NMDARs. In mature cultured neurons, NR2A-NMDARs promote, whereas NR2B-NMDARs inhibit, the surface expression of GluR1, primarily by regulating its surface insertion. In mature neurons, NR2B is coupled to inhibition rather than activation of the Ras-ERK pathway, which drives surface delivery of GluR1. Moreover, the synaptic Ras GTPase activating protein (GAP) SynGAP is selectively associated with NR2B-NMDARs in brain and is required for inhibition of NMDAR-dependent ERK activation. Preferential coupling of NR2B to SynGAP could explain the subtype-specific function of NR2B-NMDARs in inhibition of Ras-ERK, removal of synaptic AMPARs, and weakening of synaptic transmission.