Publications

2019

Fames, P., Dignissim, H., Sociosqu, I. & Gravida, D. Mauris felis ante montes rhoncus semper, iaculis nisl facilisis malesuada maecenas. Mauris felis ante montes rhoncus semper, iaculis nisl facilisis malesuada maecenas (2019).

Lacus, ultrices in ultrices tellus odio nunc urna. Massa aenean sed ipsum praesent enim. Porttitor iaculis augue pulvinar nam feugiat. Aliquam morbi ut ultricies elementum adipiscing purus proin semper. Viverra accumsan tempus, vitae auctor a. Dictumst cras dui sit feugiat. Enim nulla pulvinar urna sit eu placerat.

Nascetur nisi, tortor velit et ipsum commodo. Tempor massa, non suscipit at sagittis morbi eget euismod.

Fames, P., Dignissim, H., Sociosqu, I. & Gravida, D. Mauris felis ante montes rhoncus semper, iaculis nisl facilisis malesuada maecenas. Mauris felis ante montes rhoncus semper, iaculis nisl facilisis malesuada maecenas (2019).

Lacus, ultrices in ultrices tellus odio nunc urna. Massa aenean sed ipsum praesent enim. Porttitor iaculis augue pulvinar nam feugiat. Aliquam morbi ut ultricies elementum adipiscing purus proin semper. Viverra accumsan tempus, vitae auctor a. Dictumst cras dui sit feugiat. Enim nulla pulvinar urna sit eu placerat.

Nascetur nisi, tortor velit et ipsum commodo. Tempor massa, non suscipit at sagittis morbi eget euismod.

Fames, P., Dignissim, H., Sociosqu, I. & Gravida, D. Mauris felis ante montes rhoncus semper, iaculis nisl facilisis malesuada maecenas. Mauris felis ante montes rhoncus semper, iaculis nisl facilisis malesuada maecenas (2019).

Lacus, ultrices in ultrices tellus odio nunc urna. Massa aenean sed ipsum praesent enim. Porttitor iaculis augue pulvinar nam feugiat. Aliquam morbi ut ultricies elementum adipiscing purus proin semper. Viverra accumsan tempus, vitae auctor a. Dictumst cras dui sit feugiat. Enim nulla pulvinar urna sit eu placerat.

Nascetur nisi, tortor velit et ipsum commodo. Tempor massa, non suscipit at sagittis morbi eget euismod.

Fleck, D. et al. PTCD1 Is Required for Mitochondrial Oxidative-Phosphorylation: Possible Genetic Association with Alzheimer’s Disease.. The Journal of neuroscience : the official journal of the Society for Neuroscience 39, 4636–4656 (2019).

In addition to amyloid-β plaques and tau tangles, mitochondrial dysfunction is implicated in the pathology of Alzheimer's disease (AD). Neurons heavily rely on mitochondrial function, and deficits in brain energy metabolism are detected early in AD; however, direct human genetic evidence for mitochondrial involvement in AD pathogenesis is limited. We analyzed whole-exome sequencing data of 4549 AD cases and 3332 age-matched controls and discovered that rare protein altering variants in the gene pentatricopeptide repeat-containing protein 1 (PTCD1) show a trend for enrichment in cases compared with controls. We show here that PTCD1 is required for normal mitochondrial rRNA levels, proper assembly of the mitochondrial ribosome and hence for mitochondrial translation and assembly of the electron transport chain. Loss of PTCD1 function impairs oxidative phosphorylation and forces cells to rely on glycolysis for energy production. Cells expressing the AD-linked variant of PTCD1 fail to sustain energy production under increased metabolic stress. In neurons, reduced PTCD1 expression leads to lower ATP levels and impacts spontaneous synaptic activity. Thus, our study uncovers a possible link between a protein required for mitochondrial function and energy metabolism and AD risk.SIGNIFICANCE STATEMENT Mitochondria are the main source of cellular energy and mitochondrial dysfunction is implicated in the pathology of Alzheimer's disease (AD) and other neurodegenerative disorders. Here, we identify a variant in the gene PTCD1 that is enriched in AD patients and demonstrate that PTCD1 is required for ATP generation through oxidative phosphorylation. PTCD1 regulates the level of 16S rRNA, the backbone of the mitoribosome, and is essential for mitochondrial translation and assembly of the electron transport chain. Cells expressing the AD-associated variant fail to maintain adequate ATP production during metabolic stress, and reduced PTCD1 activity disrupts neuronal energy homeostasis and dampens spontaneous transmission. Our work provides a mechanistic link between a protein required for mitochondrial function and genetic AD risk.

Koopmans, F. et al. SynGO: An Evidence-Based, Expert-Curated Knowledge Base for the Synapse.. Neuron 103, 217–234.e4 (2019).

Synapses are fundamental information-processing units of the brain, and synaptic dysregulation is central to many brain disorders ("synaptopathies"). However, systematic annotation of synaptic genes and ontology of synaptic processes are currently lacking. We established SynGO, an interactive knowledge base that accumulates available research about synapse biology using Gene Ontology (GO) annotations to novel ontology terms: 87 synaptic locations and 179 synaptic processes. SynGO annotations are exclusively based on published, expert-curated evidence. Using 2,922 annotations for 1,112 genes, we show that synaptic genes are exceptionally well conserved and less tolerant to mutations than other genes. Many SynGO terms are significantly overrepresented among gene variations associated with intelligence, educational attainment, ADHD, autism, and bipolar disorder and among de novo variants associated with neurodevelopmental disorders, including schizophrenia. SynGO is a public, universal reference for synapse research and an online analysis platform for interpretation of large-scale -omics data (https://syngoportal.org and http://geneontology.org).

Bohlen, C. J., Friedman, B. A., Dejanovic, B. & Sheng, M. Microglia in Brain Development, Homeostasis, and Neurodegeneration.. Annual review of genetics 53, 263–288 (2019).

Advances in human genetics have implicated a growing number of genes in neurodegenerative diseases, providing insight into pathological processes. For Alzheimer disease in particular, genome-wide association studies and gene expression studies have emphasized the pathogenic contributions from microglial cells and motivated studies of microglial function/dysfunction. Here, we summarize recent genetic evidence for microglial involvement in neurodegenerative disease with a focus on Alzheimer disease, for which the evidence is most compelling. To provide context for these genetic discoveries, we discuss how microglia influence brain development and homeostasis, how microglial characteristics change in disease, and which microglial activities likely influence the course of neurodegeneration. In all, we aim to synthesize varied aspects of microglial biology and highlight microglia as possible targets for therapeutic interventions in neurodegenerative disease.

Complement pathway overactivation can lead to neuronal damage in various neurological diseases. Although Alzheimer's disease (AD) is characterized by β-amyloid plaques and tau tangles, previous work examining complement has largely focused on amyloidosis models. We find that glial cells show increased expression of classical complement components and the central component C3 in mouse models of amyloidosis (PS2APP) and more extensively tauopathy (TauP301S). Blocking complement function by deleting C3 rescues plaque-associated synapse loss in PS2APP mice and ameliorates neuron loss and brain atrophy in TauP301S mice, improving neurophysiological and behavioral measurements. In addition, C3 protein is elevated in AD patient brains, including at synapses, and levels and processing of C3 are increased in AD patient CSF and correlate with tau. These results demonstrate that complement activation contributes to neurodegeneration caused by tau pathology and suggest that blocking C3 function might be protective in AD and other tauopathies.

2018

Hansen, D. , V, Hanson, J. E. & Sheng, M. Microglia in Alzheimer’s disease.. The Journal of cell biology 217, 459–472 (2018).

Proliferation and activation of microglia in the brain, concentrated around amyloid plaques, is a prominent feature of Alzheimer's disease (AD). Human genetics data point to a key role for microglia in the pathogenesis of AD. The majority of risk genes for AD are highly expressed (and many are selectively expressed) by microglia in the brain. There is mounting evidence that microglia protect against the incidence of AD, as impaired microglial activities and altered microglial responses to β-amyloid are associated with increased AD risk. On the other hand, there is also abundant evidence that activated microglia can be harmful to neurons. Microglia can mediate synapse loss by engulfment of synapses, likely via a complement-dependent mechanism; they can also exacerbate tau pathology and secrete inflammatory factors that can injure neurons directly or via activation of neurotoxic astrocytes. Gene expression profiles indicate multiple states of microglial activation in neurodegenerative disease settings, which might explain the disparate roles of microglia in the development and progression of AD pathology.

Synapse loss and Tau pathology are hallmarks of Alzheimer's disease (AD) and other tauopathies, but how Tau pathology causes synapse loss is unclear. We used unbiased proteomic analysis of postsynaptic densities (PSDs) in Tau-P301S transgenic mice to identify Tau-dependent alterations in synapses prior to overt neurodegeneration. Multiple proteins and pathways were altered in Tau-P301S PSDs, including depletion of a set of GTPase-regulatory proteins that leads to actin cytoskeletal defects and loss of dendritic spines. Furthermore, we found striking accumulation of complement C1q in the PSDs of Tau-P301S mice and AD patients. At synapses, C1q decorated perisynaptic membranes, accumulated in correlation with phospho-Tau, and was associated with augmented microglial engulfment of synapses and decline of synapse density. A C1q-blocking antibody inhibited microglial synapse removal in cultured neurons and in Tau-P301S mice, rescuing synapse density. Thus, inhibiting complement-mediated synapse removal by microglia could be a potential therapeutic target for Tau-associated neurodegeneration.

Campbell, M. K. & Sheng, M. USP8 Deubiquitinates SHANK3 to Control Synapse Density and SHANK3 Activity-Dependent Protein Levels.. The Journal of neuroscience : the official journal of the Society for Neuroscience 38, 5289–5301 (2018).

Mutations or altered protein levels of SHANK3 are implicated in neurodevelopmental disorders such as Phelan-McDermid syndrome, autism spectrum disorders, and schizophrenia (Guilmatre et al., 2014). Loss of SHANK3 in mouse models results in decreased synapse density and reduction in the levels of multiple synaptic proteins (Jiang and Ehlers, 2013). The family of SHANK scaffolding molecules are among the most heavily ubiquitinated proteins at the postsynaptic density. The ubiquitin-dependent proteasome degradation of SHANK is regulated by synaptic activity and may contribute to activity-dependent synaptic remodeling (Ehlers, 2003; Shin et al., 2012). However, the identity of the specific deubiquitinating enzymes and E3 ligases that regulate SHANK ubiquitination at synapses are unknown. Here we identify USP8/UBPY as a deubiquitinating enzyme that regulates SHANK3 and SHANK1 ubiquitination and protein levels. In primary rat neurons, USP8 enhances SHANK3 and SHANK1 protein levels via deubiquitination and increases dendritic spine density. Additionally, USP8 is essential for changes in SHANK3 protein levels following synaptic activity modulation. These data identify USP8 as a key modulator of SHANK3 downstream of synaptic activity.SIGNIFICANCE STATEMENT Precise regulation of the protein levels of the postsynaptic scaffolding protein SHANK3 is essential for proper neurodevelopment. Mutations of SHANK3 have been identified in Phelan-McDermid syndrome, autism spectrum disorders, and schizophrenia (Guilmatre et al., 2014). In this research, we identify USP8 as a key enzyme that regulates SHANK3 protein levels in neurons. USP8 acts to deubiquitinate SHANK3, which prevents its proteasomal-mediated degradation and enhances overall dendritic spine stability. In the future, the modulation of USP8 deubiquitinating activity could potentially be used to titrate the protein levels of SHANK3 to ameliorate disease.